Answer
$+36cm$
Work Step by Step
First we will use the given values in equation 34-9 to find the image distance from the first lens, $i_1$
$\frac{1}{p_1}+\frac{1}{i_1}=\frac{1}{f_1}$
Solving for $i_1$, we have:
$i_1=(\frac{1}{f_1}-\frac{1}{p_1})^{-1}$
$i_1=(\frac{1}{-15cm}-\frac{1}{10cm})^{-1}$
$i_1=-6.0cm$
From figure 34-45, we note that $p_2=d-i_1=12cm-(-6.0cm)=18cm$.
Using equation 34-9 on the second lens, we obtain:
$\frac{1}{p_2}+\frac{1}{i_2}=\frac{1}{f_2}$
$i_2=(\frac{1}{f_2}-\frac{1}{p_2})^{-1}$
$i_2=(\frac{1}{12cm}-\frac{1}{18cm})^{-1}$
$i_2=+36cm$