Answer
direction = $k $
The positive z axis
Work Step by Step
To solve this we use unit vectors of the direction to solve the equation.
$d1 $ is in the negative y direction $( -j) = ( 0i -1j + 0k)$
$d2$ is in the positive x direction $( i ) = ( 1i + 0j + 0k)$
$d1 \times d2 = (d1_yd2_z - d1_zd2_y)i +(d1_zd2_x - d1_xd2_z)j + (d1_xd2_y - d1_yd2_x)k$
$((-1\times 0)-(0\times0))i + ((0\times1)-(0\times0))j+((0\times0)-(-1\times1))k = 0i +0j+1k$
Driection = positive z axis $(k)$