Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 478: 91c

Answer

$y(x,t) = (0.16~m)~sin[(1.57~m^{-1}) x]~sin [(31.4~s^{-1}) t]$

Work Step by Step

We found that the wave speed is $20~m/s$ and the amplitude is $y_m = 0.16~m$ We can find $k$: $k = \frac{\omega}{v}$ $k = \frac{2\pi f}{v}$ $k = \frac{(2\pi)(5.0~Hz)}{20~m/s}$ $k = 1.57~m^{-1}$ Note that: $~~\omega = 2\pi f = (2\pi)(5.0 ~Hz) = 31.4~s^{-1}$ We can write the equation for the standing wave: $y(x,t) = y_m~sin(kx)~cos(\omega t+\phi)$ $y(x,t) = (0.16~m)~sin[(1.57~m^{-1}) x]~cos [(31.4~s^{-1}) t+\phi]$ At $t = 0$, the transverse displacement of the point $x = 1.0~m$ is $y = 0$ We can find $\phi$: $y(1.0~m,0) = (0.16~m)~sin[(1.57~m^{-1}) (1.0~m)]~cos [(31.4~s^{-1}) (0)+\phi] = 0$ $cos [0+\phi] = 0$ $\phi = \frac{\pi}{2}, \frac{3\pi}{2}$ If $t$ increases slightly more than $t = 0$, then $y \gt 0$ since the point $x = 1.0~m$ is moving in the positive direction of the y axis. Therefore, $\phi = \frac{3\pi}{2}$ We can write the equation for the standing wave: $y(x,t) = (0.16~m)~sin[(1.57~m^{-1}) x]~cos [(31.4~s^{-1}) t+\phi]$ $y(x,t) = (0.16~m)~sin[(1.57~m^{-1}) x]~cos [(31.4~s^{-1}) t+\frac{3\pi}{2}]$ $y(x,t) = (0.16~m)~sin[(1.57~m^{-1}) x]~sin [(31.4~s^{-1}) t]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.