Answer
34
Work Step by Step
We first must find the period:
$T= 2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{.25}{3.3}}=1.7\ s$
We now find the change in time:
$e^{\frac{-bt}{2m}}=e^{-1} \\ \frac{-bt}{2m}=-1 \\ t = \frac{2m}{b}=\frac{2(.25)}{8.4\times10^{-3}}=59.52 \ s$
Thus, the number of oscillations is:
$n =\frac{59.52}{1.7}\approx\fbox{34}$