Answer
a). $1.8rad/s^{2}$
b). $28.7$
Work Step by Step
$\omega_{0}=250rpm=26.2rad/s$
$\omega=350rpm=36.6rad/s$
$\Delta t=5.75s$
a). angular acceleration $=\frac{\omega-\omega_{0}}{\Delta t}=\frac{10.4}{5.75}=1.8rad/s^{2}$
b). $\Delta\theta=\frac{\omega_{0}^{2}-\omega^{2}}{2a}=180rad$
Thus, number of revolutions =$\frac{180}{2pi}=28.7$