Answer
(a) $f = 5.0\times 10^{12}~Hz$
(b) $f = 3.3\times 10^{6}~Hz$
(c) $f = 23.5~Hz$
(d) $f = 2.0\times 10^{-3}~Hz$
Work Step by Step
(a) We can find the frequency:
$f = \frac{c}{\lambda} = \frac{3.0\times 10^8~m/s}{60\times 10^{-6}~m} = 5.0\times 10^{12}~Hz$
(b) We can find the frequency:
$f = \frac{c}{\lambda} = \frac{3.0\times 10^8~m/s}{91~m} = 3.3\times 10^{6}~Hz$
(c) We can find the frequency:
$f = \frac{c}{\lambda} = \frac{3.0\times 10^8~m/s}{1.276\times 10^{7}~m} = 23.5~Hz$
(d) We can find the frequency:
$f = \frac{c}{\lambda} = \frac{3.0\times 10^8~m/s}{1.5\times 10^{11}~m} = 2.0\times 10^{-3}~Hz$