Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 2 - Exercises and Problems - Page 32: 84

Answer

$(a)\space c=0.11\space m/s^{4}$ $(b)\space 3.94\space m/s$ $(c)\space -2.75\space m/s^{2}$

Work Step by Step

Given that, $x=b\space t^{2}-c\space t^{4}-(1)$ ; $Where,\space x= position,\space t= time,\space b=1.82\space m/s^{2}$ (a) In here, they mentioned, x = 0 when t = 2.54 s So, let's plug these values into equation (1), $x=b\space t^{2}-c\space t^{4}$ $0=1.82\space m/s^{2}\times(2.54\space s)^{2}- c\times (2.54)^{4}$ $0= 4.62\space m - 41.62\space c\space s^{4}$ $c= \frac{4.62}{41.62}\space m/s^{4}$ (b) To find the velocity, we have to differentiate the equation (1) by t $x=b\space t^{2}-c\space t^{4}$ $\frac{d}{dt}x=\frac{d}{dt}bt^{2}- \frac{d}{dt}ct^{4}$ $V=b\times2t-c\times3t^{3}-(2)$ Now let's plug known values into equation (2) $V=1.84\space m/s^{2}\times2\times2.54\space s- 0.11\space m/s^{4}\times3\times(2.54\space s)^{3}$ $V= 9.35\space m/s-5.41\space m/s $ $V=3.94\space m/s-Velocity$ (c) To find the acceleration, we have to differentiate the equation (2) by t $V=2bt-3ct^{3}$ $\frac{d}{dt}V=\frac{d}{dt}2bt- \frac{d}{dt}3ct^{3}$ $a=2b-9ct^{2}-(3)$ Now let's plug known values into equation (3) $a=2\times1.82\space m/s^{2}-9\times0.11\space m/s^{4}(2.54\space s)^{2}$ $a=3.64\space m/s^{2}-6.39\space m/s^{2}$ $a=-2.75\space m/s^{2}- Acceleration$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.