Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 14 - Exercises and Problems - Page 272: 60

Answer

89 m

Work Step by Step

Here we use the equation $I=\frac{P}{4\pi r^{2}}$ where $I$ - Wave intensity, r - radius of the sphere Let's apply this equation to nearer observer $I=\frac{P}{4\pi x^{2}}-(1)$ Let's apply this equation to the far observer $I=\frac{P}{4\pi (x+20)^{2}}-(2)$ Given that, $I_{1}=\frac{150}{100}I_{2}=\frac{3I_{2}}{2}-(3)$ (1),(2),=>(3) $\frac{P}{4\pi x^{2}}=\frac{P}{4\pi (x+20)^{2}}\times\frac{3}{2}$ $2(x+20)^{2}=3x^{2}$ $2(x^{2}+40x+400)=3x^{2}$ $0=x^{2}-80x-800$ $x=\frac{-(-80)\pm\sqrt {(-80)^{2}-4\times1\times(-800)}}{2}$ $x=\frac{80\pm \sqrt {6400+3200}}{2}=\frac{80\pm97.98}{2}$ x should be a positive value so, we neglect the negative solution of the x. Therefore, $x=\frac{80+97.98}{2}=89m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.