Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 14 - Exercises and Problems - Page 272: 54

Answer

$(a)\space 7.79\times10^{14}W/m^{2}$ $(b)\space 3.12\times10^{9}W/m^{2}$ $(c)\space 904.08\space W/m^{2}$

Work Step by Step

Here we use the equation $I=\frac{P}{4\pi r^{2}}$ where $I$ - Wave intensity, r - radius of the sphere (a) $I=\frac{P}{4\pi r^{2}}$ ; Let's apply $P = 120 GW,\space r =3.5mm$ $I=\frac{120\times10^{9}W}{4\pi\times(3.5\times10^{-3}m)^{2}}=7.79\times10^{14}W/m^{2}$ (b) $I=\frac{P}{4\pi r^{2}}$ ; Let's apply $P = 120 GW,\space r =(3.5m\div2)=1.75m$ $I=\frac{120\times10^{9}W}{4\pi\times(1.75m)^{2}}=3.12\times10^{9}W/m^{2}$ (b) $I=\frac{P}{4\pi r^{2}}$ ; Let's apply $P = 120 GW,\space r =(6500m\div2)=3250m$ $I=\frac{120\times10^{9}W}{4\pi\times(3250m)^{2}}=904.08\space W/m^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.