Answer
$K=6.75$
Work Step by Step
$\Delta_{r}G^{\circ}=\Sigma n_{p}\Delta_{f}G^{\circ}(products)-\Sigma n_{r}\Delta _{f}G^{\circ}(reactants)$
$=[\Delta_{f}G^{\circ}(N_{2}O_{4},g)]-[2\Delta_{f}G^{\circ}(NO_{2},g)]$
$=(97.89\,kJ/mol)-[2(51.31\,kJ/mol)]$
$=-4.73\,kJ/mol$
$\Delta _{r}G^{\circ}=-RT\ln K$
$\implies K=e^{-\frac{\Delta_{r}G^{\circ}}{RT}}=e^{-\frac{-4.73\times10^{3}\,J/mol}{(8.314\,Jmol^{-1}K^{-1})(298\,K)}}$
$=6.75$