Answer
The molar solubility of $ZnCO_3$ in this solution is equal to $2.8 \times 10^{-10}M$
Work Step by Step
$0.050M [Zn(NO_3)_2] = 0.050M[Zn^{2+}]$
1. Write the $K_{sp}$ expression:
$ ZnCO_3(s) \lt -- \gt 1Zn^{2+}(aq) + 1C{O_3}^{2-}(aq)$
$1.4 \times 10^{-11} = [Zn^{2+}]^ 1[C{O_3}^{2-}]^ 1$
$1.4 \times 10^{-11} = (0.05 + S)^ 1( 1S)^ 1$
2. Find the molar solubility.
Since 'S' has a very small value, we can approximate: $[Zn^{2+}] = 0.05$
$1.4 \times 10^{-11}= 0.05 \times ( 1S)^ 1$
$ \frac{1.4 \times 10^{-11}}{0.05} = ( 1S)^ 1$
$2.8 \times 10^{-10} = S$