Answer
10.8 hours
Work Step by Step
$R_{0}=1.5\times10^{5}/s$
$R=2.5\times10^{3}/s$
$k=\frac{0.693}{t_{1/2}}=\frac{0.693}{1.83\,h}=0.379/h$
Recall that $\ln(\frac{R}{R_{0}})=-kt$
$\implies t=-\frac{\ln(\frac{R}{R_{0}})}{k}=-\frac{\ln(\frac{2.5\times10^{3}}{1.5\times10^{5}})}{0.379/h}=10.8\,h$