Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 805: 62c

Answer

The titration curve with the lower initial pH is the one for the $0.100 \space M \space HCl$ solution.

Work Step by Step

Since $HCl$ is a strong acid, the concentration of hydronium ion $H_3O^+$ is greater than the same in a $HF$ (weak acid) solution with the same acid concentration. With a greater $[H_3O^+]$, it will have a lower pH value. $0.100 \space M \space HCl$: Initial pH = -log(0.100) = 1.00 $0.100 \space M \space HF$: 1. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium: $HF(aq) + H_2O(l) \lt -- \gt F^-(aq) + H_3O^+(aq) $ \begin{matrix} & [HF] & [H_3O^+] & [F^-] \\ Initial & 0.1 & 0 & 0 \\ Change & -x & +x & +x\\ Equil & 0.1 -x & x & x \end{matrix} For approximation, we are going to consider $0.1 - x \approx 0.1$ 2. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][F^-]}{ [HF]}$ $Ka = 3.5 \times 10^{- 4}= \frac{x * x}{ 0.1}$ $Ka = 3.5 \times 10^{- 4}= \frac{x^2}{ 0.1}$ $x^2 = 0.1 \times 3.5 \times 10^{-4} $ $x = \sqrt { 0.1 \times 3.5 \times 10^{-4}} = 5.9 \times 10^{-3} $ Percent dissociation: $\frac{ 5.9 \times 10^{- 3}}{ 0.1} \times 100\% = 5.9\%$ %dissociation > 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 3.5 \times 10^{-4} = \frac{x^2}{0.1-x}$ $(3.5 \times 10^{-4} \times 0.1) - 3.5 \times 10^{-4}x = x^2$ $(3.5 \times 10^{-4} \times 0.1) - 3.5 \times 10^{-4}x - x^2 = 0$ Bhaskara: $x_1 = \frac{ - (- 3.5 \times 10^{-4})+ \sqrt {(3.5 \times 10^{-4})^2 - 4(-1)(3.5 \times 10^{-4} \times 0.1)}}{2*(-1)}$ or $x_2 = \frac{ - (- 3.5 \times 10^{-4})- \sqrt {(3.5 \times 10^{-4})^2 - 4(-1)(3.5 \times 10^{-4} \times 0.1)}}{2*(-1)}$ $x_1 = - 6.1 \times 10^{- 3} (Negative)$ $x_2 = 5.7 \times 10^{- 3}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 3. Calculate the pH value: $pH = -log[H_3O^+]$ $pH = -log( 5.7 \times 10^{- 3})$ $pH = 2.24$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.