Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 805: 60c

Answer

The addition of $1.5g$ $HI$ would not exceed the buffer capacity;

Work Step by Step

1. Calculate the molar mass $(HI)$: 1.01* 1 + 126.9* 1 ) = 127.91g/mol 2. Calculate the number of moles $(HI)$ $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{1.5}{ 127.91}$ $n(moles) = 0.0117$ 3. Find the concentration in mol/L $(HI)$: $0.0117$ mol in 1L: $0.0117 M (HI)$ 4. Drawing the ICE table we get these concentrations at the equilibrium: $HNO_2(aq) + H_2O(l) \lt -- \gt N{O_2}^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[HNO_2] = 0.125 M - x$ $[N{O_2}^-] = 0.145M + x$ $[H_3O^+] = 0 + x$ 5. Calculate 'x' using the $K_a$ expression. $ 4.6\times 10^{- 4} = \frac{[N{O_2}^-][H_3O^+]}{[HNO_2]}$ $ 4.6\times 10^{- 4} = \frac{( 0.145 + x )* x}{ 0.125 - x}$ Considering 'x' has a very small value. $ 4.6\times 10^{- 4} = \frac{ 0.145 * x}{ 0.125}$ $ 4.6\times 10^{- 4} = 1.16x$ $\frac{ 4.6\times 10^{- 4}}{ 1.16} = x$ $x = 3.97\times 10^{- 4}$ Percent dissociation: $\frac{ 3.97\times 10^{- 4}}{ 0.125} \times 100\% = 0.317\%$ x = $[H_3O^+]$ 6. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 3.97 \times 10^{- 4})$ $pH = 3.401$ 7. Since we are adding a strong acid, this reaction will occur: $N{O_2}^-(aq) + H_3O^+(aq) -- \gt HNO_2(aq) + H_2O(l)$ And these are the concentrations after this reaction: Remember: Reactants at equilibrium = Initial Concentration - y And Products = Initial Concentration + y Since $HI'$ is a strong base, y = $[HI'] = 0.0117M$ $[HNO_2] = 0.125 M + 0.0117 = 0.137M$ $[N{O_2}^-] = 0.145M - 0.0117 = 0.133M$ 8. Now, calculate the hydronium ion concentration after the addition of the $HI'$: $[H_3O^+] = Ka * (\frac{[HNO_2]}{[N{O_2}^-]})$ $[H_3O^+] = 4.6 \times 10^{-4} * \frac{0.137}{0.133}$ $[H_3O^+] = 4.6 \times 10^{-4} * 1.03$ $[H_3O^+] = 4.72 \times 10^{-4}$ 9. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 4.72 \times 10^{- 4})$ $pH = 3.326$ 10. Calculate the pH difference: $3.401 - 3.326 = 0.075$ Since it is smaller than 1, we consider that, this addition did not exceed the buffer capacity;
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.