Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 16 - Sections 16.1-16.8 - Exercises - Problems by Topic - Page 805: 59a

Answer

The $NaOH$ didn't exceed the capacity of the buffer.

Work Step by Step

1. Calculate the molar mass ($NaOH$): 22.99* 1 + 16* 1 + 1.01* 1 = 40g/mol 2. Calculate the number of moles ($NaOH$) $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{0.25}{ 40}$ $n(moles) = 6.3\times 10^{- 3}$ 3. Find the concentration in mol/L: $C(mol/L) = \frac{n(moles)}{volume(L)}$ $ C(mol/L) = \frac{ 6.3\times 10^{- 3}}{ 0.5} $ $C(mol/L) = 0.013 ($NaOH$)$ 4. Drawing the ICE table we get these concentrations at the equilibrium: $HNO_2(aq) + H_2O(l) \lt -- \gt N{O_2}^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[HNO_2] = 0.1 M - x$ $[N{O_2}^-] = 0.15M + x$ $[H_3O^+] = 0 + x$ 5. Calculate 'x' using the $K_a$ expression. $ 4.6\times 10^{- 4} = \frac{[N{O_2}^-][H_3O^+]}{[HNO_2]}$ $ 4.6\times 10^{- 4} = \frac{( 0.15 + x )* x}{ 0.1 - x}$ Considering 'x' has a very small value. $ 4.6\times 10^{- 4} = \frac{ 0.15 * x}{ 0.1}$ $ 4.6\times 10^{- 4} = 1.5x$ $\frac{ 4.6\times 10^{- 4}}{ 1.5} = x$ $x = 3.1\times 10^{- 4}$ Percent dissociation: $\frac{ 3.1\times 10^{- 4}}{ 0.1} \times 100\% = 0.31\%$ x = $[H_3O^+]$ $[HNO_2] = 0.1 M - x = 0.1 M - 3.1 \times 10^{-4}M \approx 0.1M$ $[N{O_2}^-] = 0.15M + x = 0.1 M + 3.1 \times 10^{-4}M \approx 0.15M$ $[H_3O^+] = 0 + x = 3.1 \times 10^{-4}M$ 6. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 3.1 \times 10^{- 4})$ $pH = 3.51$ 7. Since we are adding a strong base, this reaction will occur: $HNO_2(aq) + OH^-(aq) -- \gt N{O_2}^-(aq) + H_2O(l)$ And these are the concentrations after this reaction: Remember: Reactants at equilibrium = Initial Concentration - y And Products = Initial Concentration + y Since $NaOH$ is a strong base, y = $[NaOH] = 0.0125M$ $[HNO_2] = 0.1 M - 0.0125 = 0.088M$ $[N{O_2}^-] = 0.15M + 0.0125 = 0.16M$ 8. Now, calculate the hydronium ion concentration after the addition of the $NaOH$: $[H_3O^+] = Ka * (\frac{[HNO_2]}{[N{O_2}^-]})$ $[H_3O^+] = 4.6 \times 10^{-4} * \frac{0.088}{0.16}$ $[H_3O^+] = 4.6 \times 10^{-4} * 0.54$ $[H_3O^+] = 2.5 \times 10^{-4}$ 9. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 2.5 \times 10^{- 4})$ $pH = 3.60$ 10. Calculate the pH difference: $3.60 - 3.51 = 0.09$ Since it is smaller than 1, we consider that, this compound did not exceed the buffer capacity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.