Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 1 - Sections 1.1-1.8 - Exercises - Challenge Problems - Page 42: 139

Answer

$$13 \%$$

Work Step by Step

1. Convert the units to g and cm: $$155 \space lb \times \frac{1000 \space g}{2.20 \space lb} = 70500 \space g$$ $$40.0 \space lb \times \frac{1000 \space g}{2.20 \space lb} = 18200 \space g$$ $$4.0 \space ft \times \frac{30.48 \space cm}{1 \space ft} = 120 \space cm$$ 2. Calculate the volume of the person and the fat: $$70500 \space g \times \frac{1 \space cm^3}{1.0 \space g} = 70500 \space cm^3$$ $$18200 \space g \times \frac{1 \space cm^3}{0.918 \space g} = 19800 \space cm^3$$ $$V_{person} = 70500 \space cm^3$$ $$V_{person} + V_{fat} = 70500 \space cm^3 + 19800 \space cm^3 = 90300 \space cm^3$$ 3. The volume of a cylinder is calculated by the formula: $$V = \pi r^2 h$$ Solving for $r$: $$r = \sqrt {\frac V {\pi h}}$$ - Find the radius of the person without the fat: $$r = \sqrt {\frac {(70500 \space cm^3)} {\pi (120 \space cm)}} = 13.675 \space cm$$ - Find the radius of the person with the fat: $$r = \sqrt {\frac {(90300 \space cm^3)} {\pi (120 \space cm)}} = 15.477 \space cm$$ 4. The waist size is determined by $2\pi r$. Since $2\pi$ is constant, the percent increase in waist size is equal to the same of the radius. $$Percent \space increase = \frac{(15.477 \space cm - 13.675 \space cm)}{13.675 \space cm} \times 100\%= 13\%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.