Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 17 - Questions and Problems - Page 827: 17.65

Answer

(a) $1.0 \times 10^{-5}$ M (b) $1.1 \times 10^{-10}$ M

Work Step by Step

(a) 1. Write the $K_{sp}$ expression: $ BaSO_4(s) \lt -- \gt 1SO_4^{2-}(aq) + 1Ba^{2+}(aq)$ $1.1 \times 10^{-10} = [SO_4^{2-}]^ 1[Ba^{2+}]^ 1$ 2. Considering a pure solution: $[SO_4^{2-}] = 1S$ and $[Ba^{2+}] = 1S$ $1.1 \times 10^{-10}= ( 1S)^ 1 \times ( 1S)^ 1$ $1.1 \times 10^{-10} = S^ 2$ $ \sqrt [ 2] {1.1 \times 10^{-10}} = S$ $1.0 \times 10^{-5} = S$ - This is the molar solubility value for this salt in pure water. ---- (b) 1. Write the $K_{sp}$ expression: $ BaSO_4(s) \lt -- \gt 1SO_4^{2-}(aq) + 1Ba^{2+}(aq)$ $1.1 \times 10^{-10} = [SO_4^{2-}]^ 1[Ba^{2+}]^ 1$ $1.1 \times 10^{-10} = (1 + S)^ 1( 1S)^ 1$ 2. Find the molar solubility. Since 'S' has a very small value, we can approximate: $[SO_4^{2-}] = 1$ $1.1 \times 10^{-10}= (1)^ 1 \times ( 1S)^ 1$ $ \frac{1.1 \times 10^{-10}}{1} = ( 1S)^ 1$ $1.1 \times 10^{-10} = S$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.