Answer
$x = 1- 2y^2$, where $y$ in $[-1,1]$
Work Step by Step
$y = sin~t$
$y^2 = sin^2~t$
We can replace this value in the other equation:
$x = cos~2t$
$x = 1- 2~sin^2~t$
$x = 1- 2y^2$
Since $t$ in $(-\pi, \pi)$, then $y$ in $[-1,1]$
$x = 1- 2y^2$, where $y$ in $[-1,1]$