Answer
$A = 24\sqrt{3}$
We also find this area when we use Heron's formula.
Work Step by Step
We can find the area of the triangle:
$A = \frac{1}{2}bh$
$A = \frac{1}{2}(16)(3\sqrt{3})$
$A = 24\sqrt{3}$
We can find the semiperimeter of the triangle:
$S = \frac{a+b+c}{2}$
$S = \frac{6+14+16}{2}$
$S = 18$
We can use Heron's formula to find the area of the triangle:
$A = \sqrt{S(S-a)(S-b)(S-c)}$
$A = \sqrt{18(18-6)(18-14)(18-16)}$
$A = \sqrt{1728}$
$A = 24\sqrt{3}$