Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.4 Sum and Difference Identities for Sine and Tangent - 5.4 Exercises - Page 227: 24

Answer

$$sin(-\frac{13\pi}{12})=sin\frac{\pi}{12}=\frac{\sqrt3-1}{2\sqrt2}\approx0.2588$$

Work Step by Step

We know that, $$sin(-\theta)=sin(\pi-\theta)=-sin\theta$$ & $$sin(\pi+\theta)=-sin(\theta)$$ So, $sin(\frac{13\pi}{12})=-sin\frac{\pi}{12}$ $\therefore sin(-\frac{13\pi}{12})=-(-sin\frac{\pi}{12})=sin\frac{\pi}{12}$ $sin\frac{\pi}{12}=sin(\frac{\pi}{4}-\frac{\pi}{6})$ $sin(\frac{\pi}{4}-\frac{\pi}{6})=sin\frac{\pi}{4}cos\frac{\pi}{6}-cos\frac{\pi}{4}sin\frac{\pi}{6}$ $$[\because sin(A-B)=sinAcosB-cosAsinB]$$ putting the values of trigonometric ratios we get, $sin\frac{\pi}{12}=\frac{1}{\sqrt2}\times\frac{\sqrt3}{2}-\frac{1}{\sqrt2}\times\frac{1}{2} = \frac{\sqrt3-1}{2\sqrt2}$ $$\therefore sin(-\frac{13\pi}{12})= \frac{\sqrt3-1}{2\sqrt2}$$ $\frac{\sqrt3-1}{2\sqrt2}\approx(0.2588)$ Alternate method: By putting $ sin\frac{\pi}{12}= cos(\frac{\pi}{2}-\frac{\pi}{12})$. [HINT: Use "$cos(A-B)=cosAcosB+sinAsinB$"]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.