Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.4 Sum and Difference Identities for Sine and Tangent - 5.4 Exercises - Page 227: 23

Answer

$tan\frac{11\pi}{12} = -\frac{1}{2+\sqrt3} \approx -0.26795$

Work Step by Step

We know, $$tan(A-B)=\frac{tanA-tanB}{1+tanAtanB}$$ & $$tan(\pi-A)= -tanA$$ Using above two formulas we can write, $tan\frac{11\pi}{12}= tan(\pi-\frac{\pi}{12})=-tan\frac{\pi}{12}$ Now we can write, $\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$ So we use that in above equation, $$tan\frac{\pi}{12}=\frac{tan\frac{\pi}{3}-tan\frac{\pi}{4}}{1+tan\frac{\pi}{3}tan\frac{\pi}{4}}$$ putting the values of respective trigonometric identities $$tan\frac{\pi}{12}=\frac{\sqrt3-1}{1+(\sqrt3\times1)}$$ $tan\frac{\pi}{12}=\frac{\sqrt3-1}{1+\sqrt3}=\frac{\sqrt3-1}{1+\sqrt3}\times(\frac{1+\sqrt3}{1+\sqrt3})$ $tan\frac{\pi}{12}=\frac{3-1}{1+3+2\sqrt3}=\frac{2}{4+2\sqrt3}=\frac{1}{2+\sqrt3}$ So we get, $-tan\frac{\pi}{12}=-\frac{1}{2+\sqrt3}$ $$\therefore tan\frac{11\pi}{12}=-\frac{1}{2+\sqrt3}\approx-0.26795$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.