Answer
$$\cos(270^\circ+\theta)=\sin\theta$$
Work Step by Step
$$A=\cos(270^\circ+\theta)$$
The strategy is to apply the cosine sum identity:
$$\cos(A+B)=\cos A\cos B-\sin A\sin B$$
That turns $A$ into
$$A=\cos270^\circ\cos\theta-\sin270^\circ\sin\theta$$
We have $\cos270^\circ=\cos(-90^\circ)=\cos90^\circ=0$ and $\sin270^\circ=\sin(-90^\circ)=-\sin90^\circ=-1$
$$A=0\times\cos\theta-(-1)\times\sin\theta$$
$$A=1\times\sin\theta=\sin\theta$$