Answer
$$\cos(90^\circ-\theta)=\sin\theta$$
Work Step by Step
$$A=\cos(90^\circ-\theta)$$
Apply the cosine difference identity, which states
$$\cos(A-B)=\cos A\cos B+\sin A\sin B$$
we have
$$A=\cos90^\circ\cos\theta+\sin90^\theta\sin\theta$$
$$A=0\times\cos\theta+1\times\sin\theta$$
$$A=\sin\theta$$
which is actually the proof of cofunction identity for $\sin\theta$:
$$\sin\theta=\cos(90^\circ-\theta)$$