Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 209: 73

Answer

$$\frac{\tan x}{1+\cos x}+\frac{\sin x}{1-\cos x}=\cot x+\sec x\csc x$$ The expression is an identity.

Work Step by Step

$$\frac{\tan x}{1+\cos x}+\frac{\sin x}{1-\cos x}=\cot x+\sec x\csc x$$ 1) First, we examine the right side. $$A=\cot x+\sec x\csc x$$ The following identities would be applied now: $$\cot x=\frac{\cos x}{\sin x}\hspace{1cm}\sec x=\frac{1}{\cos x}\hspace{1cm}\csc x=\frac{1}{\sin x}$$ That means $A$ would be $$A=\frac{\cos x}{\sin x}+\frac{1}{\cos x}\frac{1}{\sin x}$$ $$A=\frac{\cos x}{\sin x}+\frac{1}{\sin x\cos x}$$ $$A=\frac{\cos^2 x+1}{\sin x\cos x}$$ 2) Now let's examine the left side. $$B=\frac{\tan x}{1+\cos x}+\frac{\sin x}{1-\cos x}$$ $$B=\frac{\tan x(1-\cos x)+\sin x(1+\cos x)}{(1-\cos x)(1+\cos x)}$$ $$B=\frac{\tan x-\tan x\cos x+\sin x+\sin x\cos x}{1-\cos^2 x}$$ Next we transform $\tan x=\frac{\sin x}{\cos x}$ and $\sin^2 x=1-\cos^2 x$ $$B=\frac{\frac{\sin x}{\cos x}-\frac{\sin x}{\cos x}\cos x+\sin x+\sin x\cos x}{\sin^2 x}$$ $$B=\frac{\frac{\sin x}{\cos x}-\sin x+\sin x+\sin x\cos x}{\sin^2 x}$$ $$B=\frac{\frac{\sin x}{\cos x}+\sin x\cos x}{\sin^2x}$$ $$B=\frac{\frac{\sin x+\sin x\cos^2 x}{\cos x}}{\sin^2x}$$ $$B=\frac{\sin x+\sin x\cos^2 x}{\sin^2x\cos x}$$ $$B=\frac{1+\cos^2 x}{\sin x\cos x}$$ (eliminate both numerator and denominator by $\sin x$) 3) We can see that $A=B$. The expression is therefore an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.