Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 209: 64

Answer

$$\frac{\csc\theta+\cot\theta}{\tan\theta+\sin\theta}=\cot\theta\csc\theta$$ We simplify the left side first, and the trigonometric expression is an identity.

Work Step by Step

$$\frac{\csc\theta+\cot\theta}{\tan\theta+\sin\theta}=\cot\theta\csc\theta$$ The left side is more complicated, which means we would deal with it first. $$A=\frac{\csc\theta+\cot\theta}{\tan\theta+\sin\theta}$$ We would use the following identities: $$\csc\theta=\frac{1}{\sin\theta}\hspace{1cm}\cot\theta=\frac{\cos\theta}{\sin\theta}\hspace{1cm}\tan\theta=\frac{\sin\theta}{\cos\theta}$$ Apply them into $A$: $$A=\frac{\frac{1}{\sin\theta}+\frac{\cos\theta}{\sin\theta}}{\frac{\sin\theta}{\cos\theta}+\sin\theta}$$ $$A=\frac{\frac{1+\cos\theta}{\sin\theta}}{\frac{\sin\theta+\sin\theta\cos\theta}{\cos\theta}}$$ $$A=\frac{1+\cos\theta}{\sin\theta}\times\frac{\cos\theta}{\sin\theta+\sin\theta\cos\theta}$$ $$A=\frac{1+\cos\theta}{\sin\theta}\times\frac{\cos\theta}{\sin\theta(1+\cos\theta)}$$ $$A=\frac{\cos\theta}{\sin^2\theta}$$ $$A=\frac{\cos\theta}{\sin\theta}\times\frac{1}{\sin\theta}$$ Also, from the following identities: $$\frac{\cos\theta}{\sin\theta}=\cot\theta\hspace{1.5cm}\frac{1}{\sin\theta}=\csc\theta$$ Therefore, $$A=\cot\theta\csc\theta$$ The trigonometric expression is therefore proved.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.