Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 209: 60

Answer

$$\frac{(\sec\theta-\tan\theta)^2+1}{\sec\theta\csc\theta-\tan\theta\csc\theta}=2\tan\theta$$ The equation is an identity.

Work Step by Step

$$\frac{(\sec\theta-\tan\theta)^2+1}{\sec\theta\csc\theta-\tan\theta\csc\theta}=2\tan\theta$$ Obviously, the left side is so complicated compared with the right one that we'd better simplify it first. $$\frac{(\sec\theta-\tan\theta)^2+1}{\sec\theta\csc\theta-\tan\theta\csc\theta}$$ $$=\frac{\sec^2\theta-2\sec\theta\tan\theta+\tan^2\theta+1}{\sec\theta\csc\theta-\tan\theta\csc\theta}$$ We notice $\tan^2\theta+1=\sec^2\theta$, which means $$=\frac{\sec^2\theta-2\sec\theta\tan\theta+\sec^2\theta}{\sec\theta\csc\theta-\tan\theta\csc\theta}$$ $$=\frac{2\sec^2\theta-2\sec\theta\tan\theta}{\csc\theta(\sec\theta-\tan\theta)}$$ $$=\frac{2\sec\theta(\sec\theta-\tan\theta)}{\csc\theta(\sec\theta-\tan\theta)}$$ $$=\frac{2\sec\theta}{\csc\theta}$$ $\sec\theta=\frac{1}{\cos\theta}$ and $\csc\theta=\frac{1}{\sin\theta}$. Therefore, $$=2\frac{\frac{1}{\cos\theta}}{\frac{1}{\sin\theta}}$$ $$=2\frac{\sin\theta}{\cos\theta}$$ $$=2\tan\theta$$ The equation is therefore an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.