Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Review Exercises - Page 94: 41

Answer

true

Work Step by Step

reference angles: $\left[\begin{array}{lllll} Quadr.: & I & II & III & IV\\ \theta' & \theta & 180^{o}-\theta & \theta-180^{o} & 360^{o}-\theta \end{array}\right]$ ------------------ $240^{o}$ is in quadrant III, and we find the reference angle with $\theta'=\theta-180^{o}=240^{o}-180^{o}=60^{o}$ (special angle) In quadrant III, sine is negative, so LHS= $\displaystyle \sin 240^{o}=-\sin 60^{o}=-\frac{\sqrt{3}}{2}$ $120^{o}$ is in quadrant II, and we find the reference angle with $\theta'=180^{o}-\theta=180^{o}-120^{o}=60^{o}$ (special angle) In quadrant II, sine is positive, cosine is negative, so $\displaystyle \sin 120^{o}=\sin 60^{o}=\frac{\sqrt{3}}{2},$ $\displaystyle \cos 120^{o}=-\cos 60^{o}=-\frac{1}{2}$ RHS= 2 $\displaystyle \sin 120^{o}\cos 120^{o}=2(\frac{\sqrt{3}}{2})(-\frac{1}{2})=-\frac{\sqrt{3}}{2}$ $LHS=RHS$ the statement is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.