Answer
$41.635092^{\circ}$
Work Step by Step
Step 1: Using the reciprocal identity $\cot\theta=\frac{1}{\tan\theta}$, we write $\cot \theta=1.1249386$ as $\frac{1}{\tan\theta}=1.1249386$
Step 2: Using cross-multiplication,
$\frac{1}{\tan\theta}=\frac{1.1249386}{1}$ is written as $\tan\theta=\frac{1}{1.1249386}$
Step 3: Writing $\tan\theta=\frac{1}{1.1249386}$ as $\theta=\tan^{-1} \frac{1}{1.1249386}$
Step 4: Using degree mode, we type $\tan^{-1} \frac{1}{1.1249386}$ into the calculator and solve:
$\theta=\tan^{-1} \frac{1}{1.1249386}=41.635092^{\circ}$