Answer
$d(P_1, P_2)=3\sqrt{5}\approx 6.71$
Work Step by Step
The distance between the points $P_1=(x_1, y_1)$ and $P_2=(x_2, y_2)$, is given by the formula:
$d(P_1, P_2)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
If we plug in the coordinates of the two given points given into the formula above, we'd have:
\begin{align*}
d(P_1, P_2)&=\sqrt{(-2-4)^2+(-5-(-2))^2}\\
&=\sqrt{36+9}\\
&=\sqrt{45}\\
&=\sqrt{9\cdot5}\\
&=3\sqrt5\\
&\approx6.71
\end{align*}