Answer
neither
Work Step by Step
1. Given $\vec v=-2i+2j, \vec w=-3i+2j$, we have $\vec v\cdot\vec w=(-2)(-3)+(2)(2)=10$
2. We can get the angle between the vectors
$\theta=cos^{-1}(\frac{\vec v\cdot\vec w}{||\vec v || ||\vec w ||})=cos^{-1}(\frac{10}{\sqrt {4+4}\sqrt {9+4}})\approx11.3^\circ$,
3. Thus they are neither parallel nor orthagonal..