Answer
$-20i+13j$
Work Step by Step
Let us consider two vectors $v=pi+qj$ and $w=xi+yj$; then we have: $v \pm w=(p \pm x)i+(q \pm y)j$ and if $k$ is any arbitrary constant, then $ k \cdot v=v(pi+qj)=vpi+vqj$
Now, $4v-3w=4(-2i+j)-3(4i-3j) \\=-8i+4j-12i+9j \\=-20i+13j$