Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 6 - Analytic Trigonometry - Section 6.4 Trigonometric Identities - 6.4 Assess Your Understanding - Page 496: 13

Answer

$ \dfrac{1}{\cos{\theta}\sin{\theta}}$

Work Step by Step

Combine the expressions by using their LCD, which is $\cos{\theta}\sin{\theta}$, to obtain: \begin{align*} \dfrac{\sin{\theta}+\cos{\theta}}{\cos{\theta}}+\dfrac{\cos{\theta}-\sin{\theta}}{\sin{\theta}} &= \dfrac{(\sin{\theta}+\cos{\theta})\sin{\theta}}{\cos{\theta}\sin{\theta}}+\dfrac{(\cos{\theta}-\sin{\theta})\cos{\theta}}{\cos{\theta} \sin{\theta}}\\\\ &= \dfrac{\sin^2{\theta}+\sin{\theta} \cos{\theta}}{\cos{\theta}\sin{\theta}}+\dfrac{\cos^{2}{\theta}-\sin{\theta}\cos{\theta}}{\cos{\theta}\sin{\theta}}\\\\ &= \dfrac{\sin^2{\theta}+\sin{\theta} \cos{\theta}+\cos^{2}{\theta}-\sin{\theta}\cos{\theta}}{\cos{\theta}\sin{\theta}}\\\\ &= \dfrac{\sin^2{\theta}+\cos^2{\theta}}{\cos{\theta}\sin{\theta}} \end{align*} Since $\sin^2{\theta}+\cos^2{\theta} = 1$, then $\dfrac{\sin^2{\theta}+\cos^2{\theta}}{\cos{\theta}\sin{\theta}} =\boxed{ \dfrac{1}{\cos{\theta}\sin{\theta}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.