Answer
$\dfrac{2}{3}$
Work Step by Step
The general form for the function can be expressed as: $y=A\sin \ (\omega x)$
where $A$ represents the amplitude.
The $\omega$ can be found from the period by the formula:
$\omega=\dfrac{2\pi}{T}$
and the phase shift is $\dfrac{\phi}{\omega}$.
This means that $\phi=\omega \times \ Phase \ Shift$
We have: $A=|-2|=2$, $\omega=3 \pi$,
Therefore, the period of the function can be computed as:
$T=\dfrac{ 2 \pi}{\omega}=\dfrac{2 \pi}{3 \pi}=\dfrac{2}{3}$