Answer
The domain of the inverse function $g^{-1}(x)$ is: $(0,8)$
The range of the inverse function $g^{-1}(x)$ is: $[0, 15]$.
Work Step by Step
If a function $g(x)$ is one-to-one, then for all $y=g(x)$ there is only one $x$. When finding the inverse of the function, the $x$ and $y$ values get switched. The domain of the function $g(x)$ becomes the range of the inverse function and the range of the inverse function $g^{-1}(x)$ becomes the domain of the function $g(x)$.
Thus, the domain of the inverse function $g^{-1}(x)$ is: $(0,8)$
The range of the inverse function $g^{-1}(x)$ is: $[0, 15]$.