Answer
The domain of the inverse function $f^{-1}(x)$ is: $[5,\infty)$
The range of the inverse function $f^{-1}(x)$ is: $[0,\infty)$.
Work Step by Step
If a function $f(x)$ is one-to-one, then for all $y=f(x)$ there is only one $x$. When finding the inverse of the function, the $x$ and $y$ values get switched. The domain of the function $f(x)$ becomes the range of the inverse function and the range of the inverse function $f^{-1}(x)$ becomes the domain of the function $f(x)$.
Thus, the domain of the inverse function $f^{-1}(x)$ is: $[5,\infty)$
The range of the inverse function $f^{-1}(x)$ is: $[0,\infty)$.