Answer
See graph,
maximum $f(1.15)=1.08$ at $x=1.15$, minimum $f(-1.15)=-5.08$ at $x=-1.15$,
increasing on $(-1.15,1.15)$, decreasing on $(-3,-1.15),(1.15,3)$.
Work Step by Step
Step 1. See graph for $f(x)=-x^3+4x-2$ over $(-3,3)$.
Step 2. We can find a local maximum $f(1.15)=1.08$ at $x=1.15$, a local minimum $f(-1.15)=-5.08$ at $x=-1.15$,
Step 3. We can determine the function is increasing on $(-1.15,1.15)$, decreasing on $(-3,-1.15),(1.15,3)$.