Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 4 - Exponential and Logarithmic Functions - Section 4.1 Composite Functions - 4.1 Assess Your Understanding - Page 281: 84

Answer

(a) $ 4x+3$, domain $(-\infty,\infty)$; (b) $ 2x+13$, domain $(-\infty,\infty)$; (c) $ 3x^2-7x-40$, domain $(-\infty,\infty)$; (d) $ \frac{3x+8}{x-5}$, domain $\{x|x\ne5 \}$.

Work Step by Step

Given $f(x)=3x+8$ and $g(x)=x-5$, we have: (a) $(f+g)(x)=(3x+8)+(x-5)=4x+3$, domain $(-\infty,\infty)$; (b) $(f-g)(x)=(3x+8)-(x-5)=2x+13$, domain $(-\infty,\infty)$; (c) $(f\cdot g)(x)=(3x+8)(x-5)=3x^2-7x-40$, domain $(-\infty,\infty)$; (d) $\frac{f}{g}=\frac{3x+8}{x-5}$, domain $\{x|x\ne5 \}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.