Answer
$\text{False}$
Work Step by Step
Let $f(x)=x$ and $g(x)=\dfrac{1}{x}$.
Then,
$f(x).g(x)=x × \dfrac{1}{x}=1 $
$f(g(x))=f(\frac{1}{x})=\dfrac{1}{x}$
From above example, $f(g(x))\ne f(x).g(x)$.
Hence, the given statement is false.