Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 12 - Counting and Probability - Section 12.2 Permutations and Combinations - 12.2 Assess Your Understanding - Page 875: 24

Answer

$P(5, 2)=20$ The list of all arrangements: $ab,ac,ad,ae\\ ba,bc,bd,be\\ ca,cb,cd,ce\\ da,db,dc,de\\ ea,eb,ec,ed$

Work Step by Step

If we want to choose $r$ elements out of $n$ regarding the order, not allowing repetition, we can do this in $P(n, r)=\frac{n!}{(n-r)!}$ ways. Hence, $P(5, 2)=\dfrac{5!}{(5-2)!}=\dfrac{5!}{3!}=5\cdot4=20$ The list of all arrangements: $ab,ac,ad,ae\\ ba,bc,bd,be\\ ca,cb,cd,ce\\ da,db,dc,de\\ ea,eb,ec,ed$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.