Answer
$x=-4$
Work Step by Step
A sequence is geometric if there exists a common ratio $r$ among consecutive terms such as: $r=\dfrac{a_n}{a_{nā1}}$.
In order for a sequence to be geometric, the quotient of all consecutive terms must remain constant.
So, we have: $\dfrac{a_3}{a_2}=\dfrac{a_2}{a_1}$.
Substituting the given values of the first three terms, we obtain:
$$\dfrac{x+3}{x+2}=\dfrac{x+2}{x}$$
Next, we will do cross-multiplication to obtain:
\begin{align*}\dfrac{x+3}{x+2}&=\dfrac{x+2}{x}\\x(x+3)&=(x+2)(x+2)\\ x^2+3x&=x^2+4x+4\\4x+4&=3x\\
4x+4-3x&=3x-3x\\
x+4&=0\\
x&=-4\end{align*}