Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 11 - Sequences; Induction; the Binomial Theorem - Section 11.1 Sequences - 11.1 Assess Your Understanding - Page 828: 74

Answer

$871$

Work Step by Step

Recall the formulas: $A) \displaystyle \sum_{k=1}^{n} k =\dfrac{n(n+1)}{2}$ $B) \sum_{k=1}^{n} c=c+c+c+...+c=cn $ $C) \sum_{k=1}^{n} (k-c) = \sum_{k=1}^{n} k- \sum_{k=1}^{n} c $ $D) \sum_{k=1}^{n} (c k)=c \sum_{k=1}^{n} (k) $ Use formula $(C)$ to obtain: $\displaystyle \sum_{k=1}^{26} (3k-7) = \sum_{k=1}^{26} (3k) - \sum_{k=1}^{26} (7)$ Use formula $(D)$ to obtain: $\displaystyle \sum_{k=1}^{26} (3k) -\sum_{k=1}^{26} (7)=3 \sum_{k=1}^{26} (k)-\sum_{k=1}^{26} (7)$ Finally, apply formulas $(A)$ and $(B)$ to obtain: $3 \displaystyle \sum_{k=1}^{26} (k)-\sum_{k=1}^{26} (7) = (3) [\dfrac{26(26+1)}{2}]-(26)(7) \\=1053-182 \\=871$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.