Precalculus: Concepts Through Functions, A Unit Circle Approach to Trigonometry (3rd Edition)

Published by Pearson
ISBN 10: 0-32193-104-1
ISBN 13: 978-0-32193-104-7

Chapter 11 - Sequences; Induction; the Binomial Theorem - Section 11.1 Sequences - 11.1 Assess Your Understanding - Page 828: 73

Answer

$1110$

Work Step by Step

Recall the formulas: $$A) \displaystyle \sum_{k=1}^{n} k =\dfrac{n(n+1)}{2} ;\\ B) \sum_{k=1}^{n} c=c+c+c+...+c=cn ; \\C) \sum_{k=1}^{n} (k-c) = \sum_{k=1}^{n} k- \sum_{k=1}^{n} c ; \ \\ D) \sum_{k=1}^{n} (c k)=c \sum_{k=1}^{n} (k) $$ Use formula $(C)$ to obtain: $\displaystyle \sum_{k=1}^{20} (5k+3) = \sum_{k=1}^{20} (5k) + \sum_{k=1}^{20} (3)$ Use formula $(D)$ to obtain: $\displaystyle \sum_{k=1}^{20} (5k)+\sum_{k=1}^{20} (3)=5 \sum_{k=1}^{20} (k) +\sum_{k=1}^{20} (3)$ Finally, apply formulas $(A)$ and $(B)$ to obtain: $5 \displaystyle \sum_{k=1}^{20} (k) + \sum_{k=1}^{20} (3) = (5) [\dfrac{20(20+1)}{2}] +(20)(3) \\=1050+60 \\=1110$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.