Answer
$$\eqalign{
& {\text{amplitude: 1}} \cr
& {\text{period: }}2\pi \cr
& {\text{vertical translation}}:{\text{none}} \cr
& {\text{phase shift}}:\frac{{3\pi }}{4}{\text{ to the right}} \cr} $$
Work Step by Step
$$\eqalign{
& y = - \sin \left( {x - \frac{{3\pi }}{4}} \right) \cr
& {\text{Rewrite the function}} \cr
& y = - \left[ {\sin \left( {x - \frac{{3\pi }}{4}} \right)} \right] + 0 \cr
& {\text{The function is written in the form }}y = a\sin \left[ {b\left( {x - d} \right)} \right] + c \cr
& \underbrace {y = - \left[ {\sin \left( {x - \frac{{3\pi }}{4}} \right)} \right] + 0}_{y = a\sin \left[ {b\left( {x - d} \right)} \right] + c} \cr
& {\text{with:}} \cr
& a = - 1,\,\,\,b = 1,\,\,\,\,d = \frac{{3\pi }}{4},{\text{ }}c = 0 \cr
& \cr
& {\text{The amplitude is given by }}\left| a \right|,\,\,\,\,\left| a \right| = \left| { - 1} \right| = 1 \cr
& {\text{The period is given by }}\frac{{2\pi }}{b} = \frac{{2\pi }}{1} = 2\pi \cr
& {\text{The vertical translation is }}c = 0,{\text{ none}} \cr
& {\text{The phase shift is }}d{\text{ translation is }}\left| d \right| = \frac{{3\pi }}{4}{\text{ }}\left( {{\text{ }}d > 0{\text{ to the right}}} \right) \cr
& \cr
& {\text{amplitude: 1}} \cr
& {\text{period: }}2\pi \cr
& {\text{vertical translation}}:{\text{none}} \cr
& {\text{phase shift}}:\frac{{3\pi }}{4}{\text{ to the right}} \cr} $$