Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 6 - The Circular Functions and Their Graphs - Chapter 6 Test Prep - Review Exercises - Page 646: 67

Answer

$$\eqalign{ & {\text{amplitude: }}3 \cr & {\text{period: }}2\pi \cr & {\text{vertical translation}}:{\text{none}} \cr & {\text{phase shift}}:\frac{\pi }{2}{\text{ to the left}} \cr} $$

Work Step by Step

$$\eqalign{ & y = 3\cos \left( {x + \frac{\pi }{2}} \right) \cr & {\text{Rewrite the function}} \cr & y = 3\left[ {\cos \left( {x - \left( { - \frac{\pi }{2}} \right)} \right)} \right] + 0 \cr & {\text{The function is written in the form }}y = a\cos \left[ {b\left( {x - d} \right)} \right] + c \cr & \underbrace {y = 3\left[ {\cos \left( {x - \left( { - \frac{\pi }{2}} \right)} \right)} \right] + 0}_{y = a\cos \left[ {b\left( {x - d} \right)} \right] + c} \cr & {\text{with:}} \cr & a = 3,\,\,\,b = 1,\,\,\,\,d = - \frac{\pi }{2},{\text{ }}c = 0 \cr & \cr & {\text{The amplitude is given by }}\left| a \right|,\,\,\,\,\left| a \right| = \left| 3 \right| = 3 \cr & {\text{The period is given by }}\frac{{2\pi }}{b} = \frac{{2\pi }}{1} = 2\pi \cr & {\text{The vertical translation is }}c = 0,{\text{ none}} \cr & {\text{The phase shift is }}d{\text{ translation is }}\left| d \right| = \frac{\pi }{2}{\text{ }}\left( {{\text{ }}d < 0{\text{ to the left}}} \right) \cr & \cr & {\text{amplitude: }}3 \cr & {\text{period: }}2\pi \cr & {\text{vertical translation}}:{\text{none}} \cr & {\text{phase shift}}:\frac{\pi }{2}{\text{ to the left}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.