Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 6 - The Circular Functions and Their Graphs - Chapter 6 Test Prep - Review Exercises - Page 646: 63

Answer

$$\eqalign{ & {\text{amplitude: }}\frac{1}{2} \cr & {\text{period: }}\frac{{2\pi }}{3} \cr & {\text{vertical translation}}:{\text{none}} \cr & {\text{phase shift}}:{\text{none}} \cr} $$

Work Step by Step

$$\eqalign{ & y = - \frac{1}{2}\cos 3x \cr & {\text{Rewrite the function}} \cr & y = - \frac{1}{2}\left[ {\cos 3\left( {x - 0} \right)} \right] + 0 \cr & {\text{The function is written in the form }}y = a\cos \left[ {b\left( {x - d} \right)} \right] + c \cr & \underbrace {y = - \frac{1}{2}\left[ {\cos 3\left( {x - 0} \right)} \right] + 0}_{y = a\cos \left[ {b\left( {x - d} \right)} \right] + c} \cr & {\text{with:}} \cr & a = - \frac{1}{2},\,\,\,b = 3,\,\,\,\,d = 0,{\text{ }}c = 0 \cr & \cr & {\text{The amplitude is given by }}\left| a \right|,\,\,\,\,\left| a \right| = \left| { - \frac{1}{2}} \right| = \frac{1}{2} \cr & {\text{The period is given by }}\frac{{2\pi }}{b} = \frac{{2\pi }}{3} \cr & {\text{The vertical translation is }}c = 0,{\text{ none}} \cr & {\text{The phase shift is }}d{\text{ translation is }}d = 0,{\text{ none}} \cr & \cr & {\text{amplitude: }}\frac{1}{2} \cr & {\text{period: }}\frac{{2\pi }}{3} \cr & {\text{vertical translation}}:{\text{none}} \cr & {\text{phase shift}}:{\text{none}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.