Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 5 - Trigonometric Functions - 5.3 Trigonometric Functions Values and Angle Measures - 5.3 Exercises - Page 531: 18

Answer

$a=\sqrt {95}$ $\sin B=\frac{7}{12}$ $\cos B=\frac{\sqrt {95}}{12}$ $\tan B=\frac{7\sqrt {95}}{95}$ $\csc B=\frac{12}{7}$ $\sec B=\frac{12\sqrt {95}}{95}$ $\cot B=\frac{\sqrt {95}}{7}$

Work Step by Step

$a=\sqrt {c^{2}-b^{2}}=\sqrt {12^{2}-7^{2}}=\sqrt {95}$ $\sin B=\frac{\text{side opposite}}{\text{hypotenuse}}=\frac{b}{c}=\frac{7}{12}$ $\cos B=\frac{\text{side adjacent}}{\text{hypotenuse}}=\frac{a}{c}=\frac{\sqrt {95}}{12}$ $\tan B=\frac{\text{side opposite}}{\text{side adjacent}}=\frac{b}{a}=\frac{7}{\sqrt {95}}=\frac{7\sqrt {95}}{95}$ The cosecant, secant, and cotangent ratios are reciprocals of the sine, cosine, and tangent values, respectively, so we have $\csc B=\frac{12}{7}$ $\sec B=\frac{12}{\sqrt {95}}=\frac{12\sqrt {95}}{95}$ $\cot B=\frac{\sqrt {95}}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.