Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test: 16

Answer

The required value is $\frac{11}{\left( x-3 \right)\left( x-4 \right)}$ , $x\ne 3,4$.

Work Step by Step

Consider the expression, $\frac{2x+3}{{{x}^{2}}-7x+12}-\frac{2}{x-3}$ The given expression can be evaluated as: $\begin{align} & \frac{2x+3}{{{x}^{2}}-7x+12}-\frac{2}{x-3}=\frac{2x+3}{{{x}^{2}}-4x-3x+12}-\frac{2}{x-3} \\ & =\frac{2x+3}{x\left( x-4 \right)-3\left( x-4 \right)}-\frac{2}{x-3} \\ & =\frac{2x+3}{\left( x-3 \right)\left( x-4 \right)}-\frac{2}{\left( x-3 \right)} \end{align}$ Take the least common denominator: $\begin{align} & \frac{2x+3}{{{x}^{2}}-7x+12}-\frac{2}{x-3}=\frac{2x+3}{\left( x-3 \right)\left( x-4 \right)}-\frac{2\left( x-4 \right)}{\left( x-3 \right)\left( x-4 \right)} \\ & =\frac{2x+3-2x+8}{\left( x-3 \right)\left( x-4 \right)} \\ & =\frac{11}{\left( x-3 \right)\left( x-4 \right)} \end{align}$ Here, $x\ne 3,4$ because at $x=3,4$ the denominator will become zero. Therefore, the value of $\frac{2x+3}{{{x}^{2}}-7x+12}-\frac{2}{x-3}$ is $\frac{11}{\left( x-3 \right)\left( x-4 \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.