Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test: 15

Answer

The required value is $\frac{{{x}^{2}}+2x+15}{\left( x+3 \right)\left( x-3 \right)}$ , $x\ne 3,-3$.

Work Step by Step

Consider the expression, $\frac{x}{x+3}+\frac{5}{x-3}$ The given expression can be further evaluated by taking least common denominator: $\begin{align} & \frac{x}{x+3}+\frac{5}{x-3}=\frac{x\left( x-3 \right)}{\left( x+3 \right)\left( x-3 \right)}+\frac{5\left( x+3 \right)}{\left( x+3 \right)\left( x-3 \right)} \\ & =\frac{x\left( x-3 \right)+5\left( x+3 \right)}{\left( x+3 \right)\left( x-3 \right)} \\ & =\frac{{{x}^{2}}-3x+5x+15}{\left( x+3 \right)\left( x-3 \right)} \\ & =\frac{{{x}^{2}}+2x+15}{\left( x+3 \right)\left( x-3 \right)} \end{align}$ Here, $x\ne 3,-3$ because at $x=3,-3$ the denominator will become zero. Therefore, the value of $\frac{x}{x+3}+\frac{5}{x-3}$ is $\frac{{{x}^{2}}+2x+15}{\left( x+3 \right)\left( x-3 \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.