Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Test: 10

Answer

The required value is $\frac{\left( x+3 \right)}{\left( x-2 \right)}$ , $x\ne 2,1$

Work Step by Step

Consider the expression, $\frac{{{x}^{2}}+2x-3}{{{x}^{2}}-3x+2}$ The given expression can be further evaluated as $\begin{align} & \frac{{{x}^{2}}+2x-3}{{{x}^{2}}-3x+2}=\frac{{{x}^{2}}+3x-x-3}{{{x}^{2}}-2x-x+2} \\ & =\frac{x\left( x+3 \right)-1\left( x+3 \right)}{x\left( x-2 \right)-1\left( x-2 \right)} \\ & =\frac{\left( x+3 \right)\left( x-1 \right)}{\left( x-2 \right)\left( x-1 \right)} \\ & =\frac{\left( x+3 \right)}{\left( x-2 \right)} \end{align}$ Here, $x\ne 2,1$ because at $x=2,1$ the denominator will become zero. Therefore, the value of $\frac{{{x}^{2}}+2x-3}{{{x}^{2}}-3x+2}$ is $\frac{\left( x+3 \right)}{\left( x-2 \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.