Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.9 - Linear Inequalities and Absolute Value Inequalities - Exercise Set - Page 138: 97

Answer

$(-\displaystyle \infty,-\frac{1}{3}]\cup[3,\infty)$

Work Step by Step

3 times a number is subtracted from 4 is: $4-3x$ the absolute value of the difference $|4-3x|$ is at least 5$\qquad...\qquad |4-3x|\geq 5$ $|4-3x|=|3x-4|\qquad $, because $|a-b|=|b-a|$ So, we solve $|3x-4|\geq 5$ $|u| \gt c $ is equivalent to ($ u\lt -c $) or ($ u\gt c $) $ \begin{array}{lllll} 3x-4\leq-5 & /+4 & ...or... & 3x-4\geq 5 & /+4\\ 3x\leq-1 & /\div 3 & & 3x \geq 9 & /\div 3\\ x\leq-1/3 & & & x\geq 3 & \\ x\in(-\infty,-1/3] & & or & x\in[3,\infty) & \\ & & & & \end{array} $ Solution set: $(-\displaystyle \infty,-\frac{1}{3}]\cup[3,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.